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Microwave Measurement of Conductivity and
Permittivity of Semiconductor Spheres by
Cavity Perturbation Technique

ABHAI MANSINGH Axp ANAND PARKASH

Abstract—Simple analytical relations for evaluating the components of
complex relative permittivity of semiconductors using a cavity perturbation
technique for spherical samples are presented. The relations although
derived under a simplifying approximation yield results of almost the same
accuracy as obtained by computer $olutions of a transcendental equation
for samples with resistivity up to about 1 Q-cm.

I. INTRODUCTION

ESONANCE METHODS based on cavity-

perturbation technique have been widely used for
the measurement of permittivity (e¢) and conductivity (o)
of materials at microwave frequencies [1]-[6]. However
for samples of high conductivity, measurement of € is
difficult {2], but 6 can be accurately measured using the
technique based on the “Eddy-Current Loss™ method [5],
[6). The procedure employed for evaluating € and o from
the cavity measurements for semiconductors has been
described by Champlin er al. [2] for spherical samples.
The dielectric parameters are obtained by first calculating
the “effective” parameters and then solving a cumber-
some, complex, and transcendental equation. The solution
of such an equation requires essential use of a fast com-
puter and the application of the technique of interpola-
tion. This makes the method unsuitable for quick evalua-
tion of dielectric parameters of samples. A need therefore
exists to simplify the method of evaluating € and o from
the measured parameters.

In the present work, the method of solving the transcen-
dental equation has been simplified making it possible to
obtain accurate results using just a desk calculator for a
substantial part of the range of ¢ and ¢ for which the
Champlin’s method can be employed. The simplified
method has been used to calculate the relative permittivity
€, and the relative conductive loss o, from the data of
effective values reported by Champlin er al. The calcu-
lated values show excellent agreement with those obtained
by solving the complex transcendental equation. In addi-
tion these equations have been used to evaluate the dielec-
tric parameters of Si (resistivity, p=100 Q-cm) and Ge
(p=210 Q-cm) from measurements made using a cylindri-
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cal TM,, mode cavity resonating at 3.6986 GHz. The
results for ¢, and o, show good agreement, respectively,
with the literature values and the dc conductivity of the
samples,

II. THEORY

A. Relations for Evaluating the Relative Permittivity and
Conductivity of Spherical Semiconductors

When a small spherical specimen is inserted in a reso-
nating cavity, in a position where the magnetic field is
zero, the resulting relative change in the complex reso-
nance frequency of the cavity can be expressed as [2]

8Q/wy=1.5 V(1 _ff(eff))/cc%(z"'ff(eff)) (1)

where C, is the cavity constant, ¥; and ¥} are, respec-
tively, the volume of the specimen and that of the cavity.
€7 i) 18 the “effective” complex permittivity of the speci-
men and is related to the actual complex relative permit-
tivity €* =¢, —jo, through the relation

€ etry =X F*(B*R) =€,(o1r) —J0hcir)-
The function F*(B*R) is given by
F*(B*R)=2p(B*R)/{2p(B*R)+(B*R)'(B*R)} (3)
with
p(B*R)={B*Rcosh(B*R)—sinh (B*R)}/(B*R)’ (4)

and

@

B*R =jwo(l*0€o)1/2(€fR2)l/2 %)

where R is the radius of the specimen and ¢, and p,, are,
respectively, the permittivity and permeability of free
space.

We define

8Q/wo=(8w/we) +(j/2{(1/0))~(1/Q0)} (6)

where @, and Q, are, respectively, the quality factors of
the cavity with and without the sample, w, =27, is the
angular resonance frequency of the empty cavity, and 8w
is the change in wy. The separation of (1) taken along with
(2), into real and imaginary parts gives

€etry T2=3X/(X?+71?)
O, (ctf) =3Y/(X*+7Y?)

()
®)
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where
X=1+(1/K)(dw/w,)  Y=(1/K)8(1/2Q)
K=3V,/(2CV,) and 8(1/20)=(1/2){(1/0,)— (1/Q,)}.

The components of €* have so far been obtained by
calculating €}, from the known values of (8w/wg),
8(1/2Q), V;, V,, and C, and then by solving the complex
transcendental equation (2). However for most cases the
calculations for the components can be simplified since
(5) can be expressed as

B*R=jByer'/* =jZ ©)
with
By = ‘*’o(l‘o‘o)lﬂR =27fR/C

where C is the speed of light. Moreover the spherical
Bessel function j;(Z) of the first kind can be expressed as

(71

J(Z)=(sinZ—ZcosZ)/Z?. (10)
These two expressions when combined with the following
set of equation [8]:

cosh(jZ)=cosZ

sinh (jZ)=/sin(Z) (11)
permit to write (4) as
w(B*R)=j(2)/2Z (12)
from which it follows that
(B*R)W(B*R)=—jy(Z). (13)

Substitutions from (12) and (13) in (2) taken along with
(3) lead to

€ /‘r(eff) 1- (Z/Z) {Jz(Z)/Jl(Z)} (14)

Relation (14) is exact and holds good for all permissible
values of Z=pe*'/? for which the basic assumptions of
the cavity-perturbation technique are valid. As such it is a
complex transcendental equation and is therefore not
suitable for quick evaluation of €*. Replacing the spheri-
cal Bessel functions by their series expansion given by [9]

)=o) =€ B (<1 (=D
B/ 2 B)/K (19

and approximating the sums up to the terms containing
Bessel functions of second order, (14) becomes

Ef/ff(eff) =1 ‘Bofsz(ﬁo)/z{jl(ﬁo)

—0.5(er —1)Byjr(By)}- (16)
For most cases (16) is not likely to cause significant error
as B, is generally less than one and j,, j,,- - -, are much

less than j,. Separation of real and imaginary parts in (16)
leads to

o[2-42/{2B%(2 +02)+ A(4~-2B¢,)} |
(17)
@18)

Opleff) =

€r(eff) = (ar(eff) —ar)(A —2B€r)/2Bar

where

A=2j,(Bo) + Bo s Bo) (192)

and
BE.Bsz(Bo)- (19b)

For a given set up and the radius of the sample, 4 and B
are constant as is evident from (9) and (19). Relations (17)
and (18) can also be expressed as

1 ‘ZBfr(eff)/{A —2B(e, ““r(eff))}] (20)

0, =°r(eff)[

and
Be2 —(4 +2Be,e1p))€, + (Ae,(e,f) —Bo?+ ZBa,u,(em) =0,
3y

Since g, must be positive and o, cannot be negative
(see (8)), it follows from (20) that
A>2Be,. (22)
In principle (20) and (21) can yield values of ¢, and g, but
(21) may yield four values of €, out of which the correct
value will be the one which satisfies the inequality (22).
For most samples it is however found that 4 is much
greater than 2B(e, —¢€,.y) (see Table I). For such cases
(20) can further be simplified to

o, =°r(eff)[ - {2B€r(eff)/A} ] . (23)

o, calculated from (23) when substituted in (21) will lead
to two values of €, out of which only the correct one will
satisfy (22). The accuracy of the results can be increased
by using the method of successive approximation in (20)
and (21). However as shown later, results with error less
than 2 percent are obtained directly from (23), (21), and
the condition (22) without using any successive approxi-
mation.

IIL.

The experimental setup used for measuring the effective
dielectric parameters of n-type silicon and n-type
germanium with resistivity 100 2-cm and 10 Q-cm, re-
spectively, was the same as described earlier [10]. The
measurement technique employed for measuring the
changes in the resonance frequency 8f and the quality
factors of the cavity was the same as reported elsewhere
[3]. The resonance frequency and the quality factor of the
empty cavity were, respectively, 3.6986 GHz and 1849.
The other measured parameters are given in Table II.

MEASUREMENTS

IV.

Relations (17) and (18) have been derived assuming
that in (15) terms containing the spherical Bessel functions
of order more than 2 are negligible compared to those
containing the Bessel function of lesser order. In order to
see to what extent (17), (18), and hence (20), (21), and (23)
yield accurate results, the relationship between the effec-
tive and the actual values of the dielectric parameters at
9.6 GHz, evaluated from (17), (18), and the exact relation
(2) have been plotted in Fig. 1 for positive values of €, )
Curves obtained from ( 17) and (18) have been shown by

RESULTS AND DISCUSSION
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TABLE I
ACTUAL DIELECTRIC PARAMETERS (€, AND 0,) EVALUATED FROM
THE EFFECTIVE VALUES USING THE EXACT TRANSCENDENTAL
RELATION (2) AND THE SIMPLER SET OF RELATIONS (21)
AND (23)

4

B x 10! Bx10

(rad)

ax102 Axl0

Sampie {em)

er (eff)

From{2) From (21) and (23)
Jr € Oy

Tleit)| €

|
n.type Si 1.8767 | 1.2505| 4.0442 | 12.45

i
p-type Si
1]
n-type Ge
v
n-type Ge

\
n-.type Si

10.26 2.0375 | 1.2583 | 5.6236 | 12.26

.52 2.2838 | 1.5224| 7.8517 | 16.72

9.82 1.9502 | 1.2998| 4,7584( 13.97

10.33 | 2.0514 | 1.2673| 55697 | —1.34

0.832 .64 0.765 | 11,9 0.765

1,500 11.68 1,400 { 1.6l 1, 340

6.290 15. 97 5.220 { 15,42 5.200

22.59 15.6+1 | 20.53 | 15,10 2030

ork of Champlin et gl. [2]

62,99 1515 60.9! 17,70 6370

1
n-type Si 15,60 1.2082 | 0.8182 | 8,8319 | 12.98

1

n-type Ge | 15.88 1.2302 | 0.820I 1,2394 | 12.58

6.67 - - 11,63 4.800

Present
Work

51.38 16.35%2,5| 49.40

TABLE 11
MEASURED PARAMETERS AT RoOM TEMPERATURE (34°C) WITH A
CAVITY OF f, =3.6986 GHz AND Q, = 1849

$ldc) dr_=n'l_m..

ohm m|at 36986c MM

1560 (450

a | &f

Sample MHz | @

t
niype SL 110 | 487 1273

It

niypeGe [0 | 487 1378

1588|532

full lines while those obtained from (2), by broken lines. It
is seen that for a sphere of a mm, the set of simultaneous
equations (17) and (18), yield results almost as accurate as
the exact relation if the modulus |a%¥| is less than or
equal to about 35. It implies that for a semiconductor of
relative permittivity 15, (17), and (18), and hence (20) and
(21) yield correct results for the entire range of resistivity
from oo to about 6 Q-cm for a specimen of radius 1 mm;
and reducing the radius of the specimen would decrease
the lower limit of the resistivity up to which the equations
are valid. At other frequencies, the upper limit of |a’*| up
to which (17) and (18) would be valid, is obtained by .
replacing the radius a by the “corrected” radius, a’={f
(GHz)/9.6}(a), defined by Champlin e al., in the equa-
tion |a%*|=35. Thus at 3.2 GHz, the corrected radius
would be one third of a while the upper limit of |a%¥|
would be 315 for which (17) and (18) are valid. It means
for frequency equal to 3.2 GHz, a=1 mm and €, =15, the
set of simultaneous equations is as accurate as the exact
relation up to resistivity about 2 £-cm.

The analytical relations (17) and (18) which simplify the
process of evaluation of the dielectric parameters have
been studied for the negative range of €, also. It has
been found that these are valid for the range 0 <|a’e¥| <
80, implying thereby that at 9.6 GHz, a=1 mm and
€, =15, these are accurate up to resistivity about 2.4
©-cm, whereas at 3.2 GHz, the validity extends to resistiv-
ity about 1 Q-cm for the same €, and the radius of the
specimen.

The curves shown by full lines in Fig. 1 have been
drawn from (17) and (18), for which the effective parame-
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Fig. 1. Relationship between {€,(r), et} and {¢,, 6.} at 9.6 GHz for
a sphere with radius=q mm, y, =1, and €, >0.

ters have been calculated by assuming different values of
¢, and o,. However the evaluation of ¢, and ¢, from the
measured values of €, ¢, and 0,4, requires the use of (21)
and (23) which have been derived under the assumption
that A>>2 B(€, —€,(r). To check how accurately the val-
ues of €, and o, are obtained in actual cases, the values of
€,in and 0, reported by Champlin ez al. and those
obtained in the present measurements, have been used to
calculate €, and o, from (21) and (23). The calculated
values of €, and o, are tabulated in Table L. It may be seen
that the values of ¢, calculated from (23) and (21) for Si
and Ge samples used in the present studies show very
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good agreement with the literature values and the values
of g at 3.6986 GHz are close to the expected values
calculated from their dc resistivity. Even in the case of the
samples of wider range of resistivity used by Champlin et
al., the values calculated from the relations suggested in
the present paper and those obtained from the complex
transcendental equation, show an agreement within 1-2
percent for almost all the samples, although for the sam-
ple with resistivity 3 @-cm the agreement is slightly re-
duced. The reduced accuracy for very low resistivity sam-
ples (p~1 2-cm) is compensated by the ease with which
o, and ¢, can be evaluated from (23) and (21).
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Short Papers

Permittivity Measurement of Modified Infinite
Samples by a Directional Coupler and a Sliding Load

DEVENDRA K. MISRA, MEMBER IEEE

Abstract—A cross coupler and waveguide sliding short technique for
measuring the permittivity of an infinite sample is described in this paper.
The experimental results obtained for commercially available cement,
wheat flour, magnesium oxide, potassium bromide, glycerin, and water are
given together with the estimated error. In view of the growing industrial
use of microwaves, moisture dependent e-values for cement and wheat
flour are also reported.

I. INTRODUCTION

A number of techniques for measuring the permittivity of
dielectric materials at microwave frequencies have been reported
[1] and a general review can be found in an excellent survey by
Lynch [2]. These methods can be generally divided into threé
groups: transmission line methods, resonant methods, and per-
turbation methods [3]. The infinite sample method [4] is particu-
larly suitable for routine measurements as a function of tempera-
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ture. This is because of the convenience of temperature control
and the simplicity with which the permittivity can be calculated
from the experimental data. However, when the dielectric con-
stant is large and/or the loss tangent is high, the uncertainty of
measurements in conventional systems increases very rapidly. A
method reported recently by Stuchly et al. [S] requires accurate
measurement of the resonant frequency and the Q factor of the
resonators for determining the permittivity of these materials.

The method presented in this paper calls for a four-port
directional coupler and a precision sliding short. It has already
been shown by the author [6] that the coupler and sliding short
arrangement can be used for measurement in place of the slotted
section. The dielectric constants of commercially available ce-
ment, wheat flour, magnesium oxide, potassium bromide,
glycerin, and water are determined by this technique. Depen-
dence of the permittivities of cement and wheat flour on mois-
ture content is also studied by this method in X-band.

I1. THEORETICAL RELATIONSHIPS

The input impedance of a homogenous nonmagnetic dielectric
filled semi-infinite rectangular waveguide carrying TE mode is
[3]

1/2

z=[1-(\/A)*] /[ eA/A )] )

where A is the free space wavelength, A, is the cutoff wavelength
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